ANEXO RESOLUCIÓN CNEE-306-2016

NORMA DEL TRANSPORTISTA PROPIETARIO

DISEÑO, CONSTRUCCIÓN, OPERACIÓN Y MANTENIMIENTO DE LAS NUEVAS AMPLIACIONES DE LÍNEAS, SUBESTACIONES O INSTALACIONES DE TRANSMISIÓN DEL SERVICIO DE TRANSPORTE DE ENERGÍA ELÉCTRICA -STEE-.

EEB INGENIERÍA Y SERVICIOS, S. A.

CONTENIDO

1.	OBJETO	4
2.	ALCANCE	4
3.	REGLAMENTACIÓN Y NORMATIVA APLICABLE	4
4.	ABREVIATURAS, ACRÓNIMOS Y SIGLAS UTILIZADAS	5
5.	PLANIFICACIÓN DE LA OBRA	7
5.1.	Seguridad Industrial y Capacitación	8
6.	CARACTERÍSTICAS TÉCNICAS Y CONDICIONES ADMINISTRATIVAS GENERALES .	8
7.	CRITERIOS GENERALES DE DISEÑO ELÉCTRICO Y CONSTRUCCIÓN	11
7.1.	DIAGRAMA UNIFILAR DE PROTECCIÓN, CONTROL Y MEDICIÓN	11
7.2.	ARREGLO GENERAL	12
7.3.	Disposición de Equipo	12
7.4.	Arreglo de la Caseta de Control	13
7.5.	Planos de diseño e instructivos de los equipos	14
8.	CRITERIOS GENERALES DE DISEÑO Y CONSTRUCCIÓN DE LA OBRA CIVIL	15
8.1.	Camino de acceso	16
8.2.	Estructuras mayores o pórticos	16
8.3.	Estructuras menores	17
8.4.	CIMENTACIONES PARA ESTRUCTURAS MAYORES Y EQUIPOS INDUCTIVOS	17
8.5.	CIMENTACIONES PARA ESTRUCTURAS MENORES	18
8.6.	Edificios y casetas	18
8.7.	Îngeniería de detalle en el diseño de la Obra Civil	18
9.	REQUERIMIENTOS DEL PUNTO DE INTERCONEXIÓN	20
9.1.	Requerimientos específicos para conectar un campo o bahía de conexión de líne	Α,
TRAN	SFORMADOR DE POTENCIA O EQUIPO DE COMPENSACIÓN DE POTENCIA REACTIVA, DENTRO DE	UNA
SUBES	stación del Transportista Propietario	20
9.2.	Requerimientos específicos para conectarse en modo de seccionamiento a una l	ÍNEA DE
TRANS	smisión del Transportista Propietario	22
9.3.	Planos de la conexión	25
9.4.	Ingeniería de Detalle	25
9.5.	Ingeniería de detalle en el diseño electromecánico	25
10.	LÍNEAS DE TRANSMISIÓN. CARACTERÍSTICAS Y CONDICIONES GENERALES	27
10.1.	Para estructuras	27
10.2.	Plano general de la trayectoria	28
10.3.	Siluetas generales de las estructuras	28
10.4.	Detalle en planta y perfil de llegadas, salidas y entronques	28
12		Página 2 de 40

10.5.	COORDINACIÓN DE AISLAMIENTO	29
10.6.	Relación de estructuras	29
10.7.	CABLES Y HERRAJES	29
10.8.	Datos meteorológicos	29
10.9.	Datos de altura de funcionamiento de las instalaciones	30
10.10). Planos de planta y perfil y tablas de estructuras	30
10.11	. LIMITACIONES AMBIENTALES	30
10.12	. Desarrollo del diseño electromecánico	30
10.13	. Documentos Técnicos	31
10.14	. Memoria descriptiva del proyecto	31
10.15	. Planos de planta, perfil y localización de estructuras	31
10.16	. Localización georeferenciada de estructuras	31
10.17	. Înformación digitalizada	32
10.18	. CÁLCULO Y DIBUJO DE CRUZAMIENTOS	32
10.19	. Planos de arreglo para fijación del Cable de Guarda de Fibra Óptica	32
10.20	Planos de conjuntos de herrajes	32
10.21	. Cálculo de flechas y tensiones	32
10.22	. Medición de resistividad y resistencia del terreno	32
10.23	. MEMORIA TÉCNICA DE AMORTIGUAMIENTO	33
10.24	. COORDINACIÓN DE AISLAMIENTO	33
10.25	MEMORIA DEL CÁLCULO DEL PARÁMETRO DE DISEÑO	33
10.26	Plano de arreglo de transposiciones	33
10.27	DIAGRAMAS DE ESFUERZO-DEFORMACIÓN	33
10.28.	ESTUDIO DE COMPORTAMIENTO DINÁMICO DE LA ESTRUCTURA Y CONDUCTORES	33
10.29.	Servidumbre de paso.	33
11.	PUESTA EN SERVICIO	34
11.1.	Responsabilidades	34
11.2.	Consideraciones generales	36
12.	OPERACIÓN	37
12.1.	Etapa de Construcción y Puesta en Servicio	37
12.2.	Etapa de Operación	38
13.	MANTENIMIENTO	38

NORMA DEL TRANSPORTISTA PROPIETARIO

OBJETO

Esta norma tiene por objeto dar los lineamientos mínimos que debe cumplir el Interesado en conectar sus instalaciones a las instalaciones del Transportista Propietario por medio de nuevas ampliaciones de líneas, subestaciones o instalaciones de transmisión del STEE, y/o modificaciones de las instalaciones del Transportista Propietario.

2. ALCANCE

Es aplicable al diseño de subestaciones, ampliación de subestaciones existentes o modificaciones de líneas de transmisión (seccionamiento) que requiera el interesado en conectar sus instalaciones a las instalaciones del Transportista Propietario hasta un nivel de tensión de 400 kV, para obras nuevas o ampliaciones.

3. REGLAMENTACIÓN Y NORMATIVA APLICABLE

Las instalaciones de transmisión a las que se refiere este documento, deberán cumplir como mínimo lo que se establece en la reglamentación vigente, en su última revisión:

- Ley General de Electricidad
- Reglamento de la Ley General de Electricidad
- Reglamento del Administrador del Mercado Mayorista
- Norma Técnica de Conexión (Resolución CNEE-256-2014 y sus modificaciones)
- Normas Técnicas de Diseño y Operación del Servicio de Transporte de Energía Eléctrica
- Normas de Estudios de Acceso al Sistema de Transporte
- Normas Técnicas de Acceso y Uso de la Capacidad de Transporte
- Normas Técnicas de Calidad del Servicio de Transporte y Sanciones
- Norma Técnica para la Expansión del Sistema de Transmisión
- Normas de Coordinación Comercial del Administrador del Mercado Mayorista
- Norma de Coordinación Operativa del Administrador del Mercado Mayorista
- Norma de Registro de Transportistas y sus instalaciones
- Reglamento del Mercado Eléctrico Regional y sus modificaciones
- Normas técnicas de diseño, construcción, montaje, puesta en servicio, operación y mantenimiento de sus instalaciones y equipos de Transportista Propietario
- Otras reglamentaciones o disposiciones emitidas por la Comisión Nacional de Energía Eléctrica (CNEE) y/o La Comisión Regional de Interconexión Eléctrica (CRIE)
- Normas de Seguridad Estructural para la República de Guatemala AGIES 2010
- Normas IEC, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas
- Normas ANSI, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas
- Normas IEEE, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas
- Normas ASTM, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas

- Normas CISPR, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas
- Normas CIGRE, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas
- Normas ANSI/ASCE, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas
- Normas ACI, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas
- Normas NEMA, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas
- Normas ASTM, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas
- Normas A572/A572M-03a, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas
- Normas A242/242M-03a, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas
- Normas A36/36M-03a, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas
- Normas A394-00, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas
- Normas A394-00, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas
- Normas A563-00, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas
- NEC, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas
- NESC, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas
- Iluminating Engineering Society IES, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas
- Normas AISC, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas
- AWS, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas
- Normas AISI, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas. Normas NFPA, aplicables a la construcción de líneas de transmisión y subestaciones eléctricas

4. ABREVIATURAS, ACRÓNIMOS Y SIGLAS UTILIZADAS

Abreviaturas, Acrónimos y Siglas utilizadas:

AGIES: Asociación Guatemalteca de Ingeniería Estructural y Sísmica.

AMM: Administrador del Mercado Mayorista

ANSI: Instituto Americano de Estándares Nacionales, por sus siglas en inglés

(American National Starndars Institute)

c.a.: Voltaje de corriente alternac.d.: Voltaje de corriente directac.c.: Voltaje de corriente continua

CNEE: Comisión Nacional de Energía Eléctrica
CRIE: Comisión Regional de Interconexión Eléctrica

SF6: Hexafluoruro de Azufre

de

Página 5 de 40

kV:

kilo volts

Var:

compensación reactiva inductiva / capacitiva

IEC:

Comisión Electrotécnica Internacional por sus siglas en inglés

(International Electromechanical Commission)

LGE:

Ley General de Electricidad

NCC:

Normas de Coordinación Comercial del AMM Normas de Coordinación Operativa del AMM

NCO: NFPA:

Asociación Nacional de Protección contra el Fuego por sus siglas en inglés

(National Fire Protection Association)

NTAUCT:

Normas Técnicas de Acceso y Uso de la Capacidad de Transporte

NTC:

Norma Técnica de Conexión

NTDOST: NTCSTS:

Normas Técnicas de Diseño y Operación del Servicio de Transporte Normas Técnicas de Calidad de Servicio de Transporte y Sanciones

PCU:

Propuesta de Conexión y Uso

RAMM:

Reglamento del Administrador del Mercado Mayorista

RMER:

Reglamento del Mercado Eléctrico Regional

RLGE: RTR:

Reglamento de la Ley General de Electricidad

SNI:

Red de Transmisión Regional Sistema Nacional Interconectado

STEE:

Servicio de Transporte de Energía Eléctrica

UTM:

Sistema de coordenadas universal transversal de Mercator por sus siglas en inglés

(Universal Transverse Mercator)

GENERALIDADES:

En caso que las leyes, reglamentos, normas y otros documentos mencionados en esta Norma del Transportista Propietario, sean derogados, revisados, actualizados o modificados, se utilizará el que esté vigente en el momento de iniciar las gestiones con el Transportista Propietario.

Lo indicado en el párrafo anterior también aplica a todos los documentos que se deriven de la elaboración del Diseño, Construcción, Puesta en Servicio, Operación y Mantenimiento, incluyendo lo que corresponda a todos los materiales y equipos a ser utilizados en las instalaciones a las que se refiere esta Norma del Transportista Propietario.

La propuesta de normas, métodos, procedimientos, criterios, cálculos, valores, etc. diferentes a los indicados en esta Norma del Transportista Propietario deben justificarse presentando la documentación y memorias de cálculo correspondiente.

Las memorias de cálculo deben indicar el procedimiento citando las normas internacionales, nacionales o del Transportista Propietario que se utilicen como fuente de información. En los casos que se requiera del uso de programas de cómputo, el Transportista Propietario podrá requerir al Interesado que realice en las oficinas del primero una presentación o demostración del programa utilizado y de los criterios aplicados.

Todos los diseños deben presentar la Memoria de Cálculo correspondiente, donde se justifique plenamente el análisis y criterio adoptado. Se podrá pedir información adicional y, cuando sea posible, aplicar lo indicado al final del párrafo anterior.

Página 6 de 40

Norma del Transportista Propietario EEB Ingeniería y Servicios, S.A. Las actividades de diseño electromecánico y civil que se han relacionado en esta Norma del Transportista Propietario son indicativas más no limitativas, por lo que el Interesado debe adicionar las que considere necesarias para cada proyecto en particular.

La ingeniería, diseños y planos para construcción, deben quedar documentados, los cuales deben ser entregados en sus versiones preliminares y final (como construido, As Built) al Transportista Propietario en medio impreso y formatos editables (AUTOCAD, Word, Excel, según aplique) con el correspondiente respaldo de archivos en los programas requeridos por el Transportista Propietario. Se debe aplicar en los diseños, construcción, la nomenclatura utilizada en las instalaciones existentes o tomar estas como referencia para nuevas instalaciones.

El Interesado debe constituir los seguros y garantías necesarias, para las instalaciones en el Punto de Interconexión en el caso que sufran daños sus instalaciones o de terceros.

Para el intercambio de información entre el Interesado y el Transportista Propietario, debe suscribirse previamente entre las partes el acuerdo de confidencialidad el cual será remitido al Interesado al momento de solicitar la PCU.

Con relación a las Fronteras de Conexión, el límite físico o frontera para la asignación de responsabilidades tanto en el proceso de construcción, la administración, operación y mantenimiento en el punto de interconexión se definirán en el Contrato de Conexión.

5. PLANIFICACIÓN DE LA OBRA

Como parte de la responsabilidad que tiene el Interesado en la planificación de todo el proyecto, especialmente lo que tenga relación con las instalaciones del Transportista Propietario, deberá realizar las gestiones que correspondan ante cada entidad pública o privada.

El Transportista Propietario podrá requerir al Interesado copia de los documentos que emitan las entidades para verificar que el proyecto que va a conectarse a sus instalaciones cumple con la legislación vigente.

El Interesado debe hacer del conocimiento del Transportista Propietario la intención de conectarse a sus instalaciones, con la finalidad de establecer aspectos básicos o preliminares, tales como: posibles Sitios de Conexión, voltajes disponibles, capacidades de potencia disponibles, espacio físico disponible, etc., de acuerdo al procedimiento establecido en la Norma Técnica de Conexión Resolución CNEE-256-2014 y sus modificaciones.

A continuación se indican algunas entidades, donde el Interesado debe informase, sin limitarse a ellas:

- En el Administrador del Mercado Mayorista sobre los requerimientos técnicos y comerciales para el tipo de proyecto que pretende instalar.
- En la Comisión Nacional de Energía Eléctrica sobre los requerimientos regulatorios que aplican al tipo de proyecto que pretende instalar.

- En el Ministerio de Ambiente y Recursos Naturales sobre los requerimientos ambientales para el tipo de proyecto que pretende instalar.
- En el Ministerio de Energía y Minas sobre los procesos administrativos que le correspondan, en función del tipo de proyecto que pretende instalar.
- En las instituciones regionales según aplique al punto de interconexión.

5.1. Seguridad Industrial y Capacitación

Con el propósito de garantizar la seguridad de las personas y evitar daños a las instalaciones, tanto del Transportista Propietario como del Interesado, debe aplicarse el Acuerdo Gubernativo número 229-2014, REGLAMENTO DE SALUD Y SEGURIDAD OCUPACIONAL vigente, del Ministerio de Trabajo y Previsión social, Reglamento para el establecimiento y control de los límites de radiaciones No Ionizantes y sus reformas, Acuerdos gubernativos 008-2011 y 313-2011 vigente. Podrá aplicarse adicionalmente otro tipo de documento sobre Salud y Seguridad Ocupacional, o temas afines, que tengan como finalidad la protección y salud de las personas y la adecuación de las instalaciones, especialmente las del Transportista Propietario.

El Transportista Propietario podrá requerir al Interesado:

- La documentación que demuestre que el personal que está laborando en el Punto de Interconexión cuenta con la preparación o capacitación necesaria para las labores que desempeña, especialmente en las instalaciones del Transportista Propietario.
- 2. Que el personal del Interesado que va laborar en las instalaciones del Transportista Propietario participe en cursos o actividades de orientación sobre las normas de seguridad que deben seguir y el uso de equipos, herramientas o equipo de protección.
- 3. El Transportista Propietario se reserva el derecho de otorgar acceso a sus instalaciones a personal no calificado, o a retirarlo, si estando dentro de las instalaciones comete faltas al Reglamento de trabajo o las condiciones establecidas en la Propuesta de Conexión y Uso, o en el Contrato de Conexión.
- 4. El Transportista Propietario se reserva el derecho de otorgar acceso a sus instalaciones de vehículos y materiales, o a retirarlos, si se observan condiciones que puedan poner en peligro a las personas o a las instalaciones.

6. CARACTERÍSTICAS TÉCNICAS Y CONDICIONES ADMINISTRATIVAS GENERALES

La operación y mantenimiento debe ser coordinada entre el Administrador del Mercado Mayorista, el Transportista Propietario y el Interesado, desde la etapa de construcción y durante la operación, para minimizar la indisponibilidad programada de las instalaciones. Con este requisito se pretende que el Sistema Nacional Interconectado pueda conservar o mejorar los niveles de confiabilidad y seguridad.

Los interruptores de potencia, seccionadores, cuchillas de puesta a tierra, transformadores de potencia, transformadores de tensión, reactores, transformadores de corriente, pararrayos, descargadores de sobre voltaje, bujes, equipos de neutro, condensadores, trampas de onda, acoplamientos de telecomunicaciones, protecciones, control análogo y digital, telecomunicaciones, y los requerimientos de aislamiento externo, coordinación de aislamiento

en el Punto de Interconexión deben cumplir como mínimo con las normas NTDOID, NTDOST, NTCSTS, NTSD, IEC, ANSI y cualquier normativa internacional aplicable en el momento de su diseño y las referidas en la presente Norma.

Los requisitos técnicos de selección de la configuración, localización, selección de equipos de patio, equipos de control, protección, medición y comunicaciones, y materiales, etc., tanto para el caso de una nueva subestación que seccione una línea de transmisión del Transportista Propietario, así como para el caso de la ampliación de una subestación existente deben cumplir con las Normas de la Comisión Nacional de Energía Eléctrica y, cuando aplique, con la Regulación Regional:

- a) Cumplir con todos los requerimientos que exige la Ley General de Electricidad y su Reglamento, el Reglamento del Administrador del Mercado Mayorista, Las Normas Técnicas de la Comisión Nacional de Energía Eléctrica, las Normas de Coordinación Comercial y Normas de Coordinación Operativa del Administrador del Mercado Mayorista, así como las disposiciones derivadas de esta norma y otras que sean aplicables al tipo de instalación a realizarse.
- b) Cumplir con todos los requerimientos establecidos en la Propuesta de Conexión y Uso y el Contrato de Conexión, garantizando el cumplimiento a la Norma Técnica de Conexión Resolución CNEE-256-2014 y sus modificaciones.
- c) Acordar por escrito, con quien corresponda, la forma de uso de la Fracción de Terreno en caso de usarse terrenos del Transportista Propietario y de otros dueños de terrenos a ser utilizados.
- d) Acordar entre las partes (transportista propietario con el interesado) la forma técnica de conexión a los activos en servicio procurando disminuir los tiempos de desconexión de las líneas existentes.
- e) Para los activos en servicio, en caso de verse afectados los activos de alguno de los interesados, se procederá conforme lo establecido en el artículo 23 de la Norma Técnica de Conexión resolución CNEE-256-2014 emitida por la Comisión Nacional de Energía Eléctrica.
- f) Todos los costos de suministro de equipos, diseño, construcción, instalación y puesta en servicio de las instalaciones de conexión serán a costa del Interesado.
- g) Todas las instalaciones de conexión directamente vinculadas a las instalaciones del Transportista Propietario serán administradas, operadas y mantenidas como se indique en el Contrato de Conexión.
- h) Todo el equipamiento de potencia, control, protección, alarmas, mediciones, comunicación, etc., deberá ser de fabricación nueva y tecnología reciente, acorde a la arquitectura y filosofía de las instalaciones existentes. El Transportista Propietario bajo

- ninguna circunstancia aceptará la instalación de equipo usado o de tecnología obsoleta en las conexiones a sus instalaciones.
- i) Antes de emitir las respectivas ordenes de fabricación de equipos a ser utilizados en el Punto de Interconexión, el interesado deberá someter a la aprobación del Transportista Propietario las características técnicas garantizadas o especificaciones detalladas, marcas y modelos de los mismos.
- j) Los equipos y materiales de los proyectos deben ser diseñados, fabricados y probados por fabricantes o entidades que cumplan como mínimo con los requisitos de aseguramiento de la calidad, según normas ISO serie 9000 ó más reciente, así como el cumplimiento de las normas referidas en la presente norma.
- k) Antes de iniciar las obras de conexión, el interesado deberá someter a consideración y aprobación del Transportista Propietario el desarrollo de ingeniería y planos detallados del Punto de Interconexión, así como garantizar el debido cumplimiento a lo establecido en la Norma Técnica de Conexión Resolución CNEE-256-2014 y sus modificaciones.
- Todos los elementos metálicos de uso exterior, tales como pórticos, soportes, gabinetes etc., deberán ser de acero galvanizado en caliente según normas ASTM aplicables, y las referidas en la presente norma.
- m) Las redes de tierra de subestaciones que se adicionen a subestaciones existentes propiedad del transportista propietario, deberán construirse de acuerdo a las normas IEEE Std 80-2000 en su última revisión, presentando Memoria de Cálculo y planos.
- n) La coordinación de aislamiento de los equipos deberá hacerse de acuerdo a las normas IEC 60071-1 y 2, presentando Memoria de Cálculo y planos, teniendo en consideración según aplique las normas referidas en la presente norma.
- o) El Transportista Propietario no se hace responsable ante el interesado o terceros si durante el proceso de instalación y puesta en servicio de las obras de conexión a cargo del interesado su personal o el de sus contratistas sufre cualquier tipo de accidente dentro de las instalaciones del Transportista Propietario.
- p) El Transportista Propietario no se hace responsable ante el interesado o terceros si durante el proceso de operación normal las instalaciones propias del Transportista Propietario sufren cualquier tipo de evento o siniestro que llegue a dañar los equipos del Interesado.
- q) En caso que por mala operación de los equipos del Interesado, conectados directamente a las instalaciones del Transportista Propietario se ocasionen daños, o se generen sanciones al Transportista Propietario por las entidades correspondientes, el Interesado queda obligado a proceder a su costa a realizar las reparaciones inmediatas, sustituir los equipos dañados y restablecer la capacidad operativa original de las

Je

instalaciones del Transportista Propietario, así como hacerse cargo de las sanciones que puedan ser emitidas por las entidades correspondientes.

- r) El costo de las indisponibilidades por la conexión de nuevas instalaciones, ampliaciones o modificación a las instalaciones existentes, serán asumidos por el Interesado conforme a la regulación vigente y de conformidad con lo que se establezca en el Contrato de Conexión.
- s) Para el caso de conexiones a la RTR y conexiones internacionales el Interesado deberá solicitar a las entidades correspondientes (CRIE, EOR, CNEE, AMM) los requisitos mínimos de equipos que deberá instalar en sus instalaciones, los costos de dichos equipos serán a su cargo.

7. CRITERIOS GENERALES DE DISEÑO ELÉCTRICO Y CONSTRUCCIÓN

Para todos los requerimientos indicados en esta norma y las aclaraciones que se den en el proceso de revisión, el Interesado debe suministrar las normas de referencia y las memorias de cálculo correspondientes a la instalación propuesta.

7.1. Diagrama unifilar de protección, control y medición

El Interesado debe suministrar el diagrama unifilar de protección, control y medición del proyecto completo.

Este diagrama debe indicar en forma clara al menos los siguientes conceptos:

- a) Interconexión del equipo primario y de comunicaciones, interruptores, transformadores de potencia, cuchillas desconectadoras, transformadores de corriente y voltaje, descargador de sobre voltaje, entre otros.
- b) Nomenclatura de interruptores, cuchillas y destinos de las líneas.
- c) Relaciones de transformación, polaridades, exactitud, cantidad de devanados secundarios y conexión secundaria de los transformadores de corriente y de voltaje, así como sus interconexiones con los equipos de protección y medición.
- **d)** Los relevadores de protección y los principales relevadores auxiliares, indicando disparos, cierres, bloqueos, disparos transferidos y alarmas.
- e) Cuando se trate de ampliaciones a instalaciones en operación, el diagrama unifilar debe mostrar tanto la instalación existente del Transportista Propietario como la ampliación o modificación a realizarse por las instalaciones del Interesado. El Transportista Propietario dará las facilidades para que el Interesado realice los levantamientos necesarios para integrar dicha información, de acuerdo al procedimiento establecido en la Norma Técnica de Conexión.

7.2. Arreglo general

Con base en el plano de topografía y localización general, el Interesado debe elaborar el diagrama de arreglo general de la subestación incluyendo las obras a construir. Estos planos deben mostrar lo siguiente:

- a) Dimensiones del Sitio de Conexión.
- b) Orientación geográfica de cada uno de los lados, y norte astronómico.
- c) Croquis de localización del sitio en el vértice superior derecho del plano.
- d) Caminos de acceso, distancias a las vías de comunicación más cercanas, oleoductos o gasoductos, limitando áreas internas y accesos.
- e) Ubicación de líneas de transmisión, transformadores de potencia y otros elementos.
- f) El arreglo de la subestación mostrando las estructuras, barras, ejes y centro de línea de equipos con sus acotaciones entre líneas de centros, escala y ubicación de caseta de control y/o relevadores, cuando aplique edificios con equipos aislados en Hexafluoruro de Azufre (SF6) u otra tecnología empleada, planta de emergencia, entre otros.
- g) Propuesta de los límites del Sitio de Conexión, para la asignación de responsabilidades asociadas a la medición, maniobras, operación, mantenimiento.
- h) Diagramas unifilares necesarios, indicando fuentes de alimentación de c.a., c.c. y c.d., unidad de transferencia manual-automática con interruptores termo magnéticos, equipos de protección y medición e interruptores termo magnéticos de los distintos circuitos de c.a., c.c. y c.d.
- i) Lista de los equipos y materiales, notas y observaciones.

7.3. Disposición de equipo

Con base en el diagrama unifilar simplificado y al arreglo general, el Interesado debe elaborar los planos a detalle de disposición de equipo en planta y cortes indicando distancia entre fases, fase a tierra, alturas de seguridad, dimensión de las estructuras mayores, cadenas de aisladores, conductores y barras, así como equipos primarios, caseta de control y/o relevadores, cuando aplique edificios con equipos aislados en Hexafluoruro de Azufre (SF6) u otra tecnología empleada, caseta para planta de emergencia, entre otros.

El Interesado debe proporcionar una lista del equipo primario a instalar, acompañado de las respectivas especificaciones técnicas y memorias de cálculo que apliquen.

Para las líneas de transmisión que queden sobre terrenos de la subestación del Transportista Propietario, se deben realizar los cálculos necesarios para la obtención de las flechas y las tensiones en distintos puntos y para diversas temperaturas.

El Interesado debe proporcionar los planos que indiquen los claros designados y las flechas consideradas en el diseño, así como las tablas y las gráficas de temperatura – flecha – tensión. El interesado debe constituir las servidumbres que apliquen para el efecto, de conformidad con lo establecido en el marco regulatorio vigente.

Toda la información a presentar por el interesado deberá atender a lo establecido en la Propuesta de Conexión y Uso -PCU-, que le será proporcionada por el Transportista Propietario

Página 12 de 40

con base en los criterios de diseño de sus instalaciones y demás aspectos regulados en la norma técnica de conexión Resolución CNEE-256-2014 y sus modificaciones.

7.4. Arregio de la caseta de control

El Interesado indicará en el plano de la caseta de control, como mínimo el arreglo de:

 Gabinetes de borneras, tableros de protecciones, mímicos, arreglo de tableros para servicios propios, baterías y cargadores, equipo de comunicaciones y control, mediciones, canalizaciones alumbrado, aire acondicionado, control supervisorio, área de servicios, acceso de trincheras, entre otros.

Todos los conceptos anteriores se representarán en planos independientes que muestren los detalles de conexiones y la ubicación del equipo en planta y cortes, incluyéndose además las listas y especificaciones de los equipos y materiales a suministrar e instalar.

La entrada de cables de control se debe realizar a los tableros de protección, control, comunicaciones y medición por medio de canalizaciones internas, con excepción de los cables de fuerza que deben ir directamente del centro de carga al equipo. La entrada de los cables de control y fuerza a la caseta se debe sellar con material no inflamable resistente y de fácil remoción.

Los diversos circuitos de alumbrado pueden alojarse en el tablero de servicios propios o en un tablero de alumbrado independiente.

En el caso de ser necesaria una caseta adicional, mostrar la forma en que se interconecta con la caseta de control existente. En esta caseta se instalan los equipos de protección, comunicaciones, control supervisorio y servicios propios de c.a., c.c. y c.d. indicando las conexiones correspondientes.

En el caso de ser necesaria la ampliación de la caseta, se debe considerar el criterio existente y proporcionar los planos actualizados (como construido, As Built). En caso de existir el espacio para ubicar el equipo, se debe proceder con lo antes señalado.

El Interesado debe proporcionar un plano donde se indique el sistema de tierras, registros, detalles de conexión, entre otros, con sus respectivas acotaciones y escala.

En ampliaciones, la red de tierras se debe prolongar en toda el área que ocupe el equipo y debe ser como mínimo del mismo calibre y configuración de la existente, prevaleciendo lo establecido en las normas IEEE Std. 80-2000.

Los cables de control, y fuerza deben contar con pantallas de cobre de baja resistencia y aislamiento retardantes a la flama además se deben canalizar por medio de trincheras, ductos y registros, respetando lo establecido en las normas establecidas en el presente documento y los criterios de diseño del Transportista Propietario.

También se canalizan los cables de control y fuerza, cables de energía, cables de potencia, cables de fibra óptica así como los cables dieléctricos, por medio de ductos o bancos de

Página 13 de 40

ductos; el número y el diámetro de ductos depende de la cantidad y diámetro de los conductores que se pretenda canalizar, respetando lo establecido en las normas establecidas en el presente documento y los criterios de diseño del Transportista Propietario.

El Interesado debe utilizar los herrajes y conectores bimetálicos adecuados a los equipos eléctricos primarios que proponga en su alcance de suministro, así como herrajes y conectores libres de efecto corona. El Interesado debe instalar en todas las derivaciones de barras a equipo primario los accesorios necesarios que cumplan con las características técnicas de las instalaciones existentes o que sean de características superiores.

En las subestaciones se debe instalar en las barras los conductores con el calibre que permita el transporte de la corriente nominal y la que deba soportar en condiciones de corto circuito. El análisis debe considerar los conductores existentes y su posible sustitución por la adición de las nuevas instalaciones.

Los criterios para el cableado de la Subestación, tanto de las instalaciones del Interesado como las que deban ser modificadas en las instalaciones del Transportista Propietario deben ser justificados con las respectivas memorias de cálculo.

El Interesado debe proporcionar un plano del alumbrado exterior, en el cual se indique la ubicación de las lámparas en las bahías mediante símbolos normalizados, cuadros de distribución de cargas mostrando desequilibrio de fases, número de circuitos de alumbrado, diámetro de los tubos conduit, cantidad y calibre de los conductores. El Interesado debe presentar una lista de los materiales y equipos empleados, así como la memoria de cálculo que garantice la correcta iluminación de las instalaciones.

El diseño de los sistemas contra incendio se deberá apegar a lo establecido en las guías o recomendaciones para la prevención, control y extinción de incendios en subestaciones eléctricas, conforme a lo requerido por el Transportista Propietario y según lo establecido en las normas aplicables para tal efecto. El Interesado debe presentar una lista de los equipos, conductores y materiales correspondientes, así como las memorias de cálculo correspondiente.

7.5. Planos de diseño e instructivos de los equipos

Para su información, revisión y comentarios, el Interesado debe proporcionar al Transportista Propietario dos copias impresas en formato A3 y una copia digital en formato AUTOCAD y PDF de los planos de dimensiones generales, diagramas unifilares, esquemáticos y de alambrado de los equipos siguientes: transformadores de potencia, transformadores de corriente y de voltaje, seccionadores o cuchillas desconectadoras, descargador de sobre voltaje, tableros de protección, control y medición, tableros de servicios propios, unidades terminales remotas y equipos de comunicación.

Asimismo, para todos los equipos que opere el Transportista Propietario por acuerdo en el contrato de conexión, a consecuencia de la nueva conexión o ampliación, el Interesado debe proporcionar dos juegos de instructivos de operación y mantenimiento. Esta información se debe entregar en formato digital y una copia impresa.

2

8. CRITERIOS GENERALES DE DISEÑO Y CONSTRUCCIÓN DE LA OBRA CIVIL

Para el desarrollo del diseño de la obra civil de subestaciones eléctricas se deben considerar las especificaciones dadas en esta norma, los criterios de diseño del Transportista Propietario y los conceptos siguientes: topografía, características particulares del sitio, características de los equipos eléctricos de instalación permanente y los requerimientos del diseño electromecánico.

Los criterios de diseño de todos los conceptos de la obra civil, deben tomar como base los reglamentos de construcción vigentes que apliquen en los sitios donde se ejecutarán las obras, especialmente las Normas de Seguridad Estructural para la República de Guatemala, AGIES 2010, o la que esté vigente de acuerdo a la última revisión.

Es responsabilidad del Interesado elaborar y entregar al Transportista Propietario los estudios geotécnicos, hidrológicos, topográficos y otros inherentes a la obra. Cuando estos estudios puedan ser proporcionados por el Transportista Propietario, especialmente cuando se trata de instalaciones existentes, sólo se deben considerar como referencia, eximiendo a éste de cualquier responsabilidad en la desviación de resultados que arrojen los estudios definitivos, cuya verificación o confirmación son responsabilidad del Interesado.

El Interesado debe desarrollar un diseño integral de: muros y cercas perimetrales externos e internos, casetas, edificios, estacionamiento, zona de amortiguamiento ambiental y, en general, de todas las estructuras de la subestación.

De acuerdo a la topografía del terreno, al estudio geotécnico y al arreglo general de la subestación, las terracerías se pueden diseñar en una o varias plataformas con la finalidad de compensar los movimientos de tierra (corte y/o relleno) y permitir el diseño óptimo de los sistemas de drenaje para el manejo de aguas pluviales en el interior y en la periferia del predio de la subestación.

Los planos de diseño del proyecto deben incluir: planta general con elevaciones, curvas de nivel, drenajes superficiales y subdrenajes, taludes, muros y sus protecciones, caminos interiores: principales, perimetrales y de mantenimiento, secciones o cortes longitudinales y transversales, pisos terminados, localización de estructuras metálicas, caseta, cantidades de obra, tipo de muro o cerca y materiales para construcción, así como los datos y detalles necesarios para su correcta interpretación.

El Interesado es responsable de la disposición o tratamiento de la tierra y otros materiales para la construcción o de desecho, derivados de excavaciones o rellenos, durante y después de la construcción, para lo cual deberá tomar las medidas compactación y mitigación pertinentes a fin de evitar la contaminación de los suelos en los lugares temporales y finales.

Durante las excavaciones requeridas para la construcción, deberá tomarse especial cuidado de no dañar las instalaciones subterráneas existentes, sean eléctricas, redes de tierra, de comunicaciones, de agua, drenajes o de otro tipo.

H

8.1. Camino de acceso

Se refiere a las superficies de rodamiento para el tránsito de vehículos requeridas para comunicar el predio de la subestación con la carretera, camino o vialidad más cercana y los caminos que se deben construir en el interior del predio de la subestación, cuyo propósito es el tránsito para construcción, supervisión, mantenimiento y maniobras, debiendo cumplir con lo siguiente:

 Elaboración de planos del camino de acceso, que contengan planta general de localización; espesores y anchos de pavimentos, cuando sea necesario; radio de curvatura; porcentaje de pendientes; sistema de drenaje; pasos vehiculares; zona de estacionamiento; especificaciones de materiales; y detalles necesarios que garanticen un buen funcionamiento.

8.2. Estructuras mayores o pórticos

Son aquellos elementos estructurales que sujetan y soportan las barras y cables de guarda de la subestación; estructuras (marcos) colocados sobre mamparas, para recibir acometidas de circuitos externos de transmisión, transformadores de potencia para distribución, transformadores de potencia para servicios propios y para bancos de capacitores o reactores.

El diseño de las estructuras mayores se debe hacer tomando en cuenta la velocidad máxima de viento con período de retorno y el coeficiente sísmico del sitio de la subestación de acuerdo a la región donde se encuentre, normas referidas en el presente documento, o como se indique en la Propuesta de Conexión y Uso. Se deben considerar las cargas actuantes sobre las estructuras y los detalles de sujeción de cables, contenidos en los planos de Disposición de Equipo e Isométrico con Cargas. Se debe indicar el criterio y la norma que se está aplicando, adjuntando la memoria de cálculo.

Cada estructura de los pórticos deberá contar con bajada de puesta a tierra desde el hilo de guarda, cuya conexión a la red de tierra de la subestación deberá ser con el cable y tipo de soldadura indicados en la PCU proporcionada por el transportista propietario.

Los perfiles para las estructuras metálicas deben ser de celosía a base de ángulos, de alma llena (placas soldadas) o tubulares. Todas las estructuras mayores y su tornillería deberán ser galvanizadas por inmersión en caliente, de acuerdo con las normas EN-ISO 1461, DIN 50976 o ASTM A153 o equivalente en su última revisión o tomando en cuenta las normas referidas en el presente documento.

El Interesado debe elaborar como mínimo los siguientes planos de diseño: Isométrico de Montaje, Columnas y Planos de Taller los cuales deben contener los detalles precisos para su fabricación, las especificaciones de los materiales y los parámetros de diseño, velocidad máxima de viento, período de retorno, coeficiente sísmico y los esfuerzos por corto circuito. El diseño y análisis estructural debe realizarse mediante un programa de computadora, debiendo indicar el criterio y la norma que se está aplicando, adjuntando las memorias de cálculo que apliquen.

JL

El diseño debe considerar las estructuras existentes en caso existan puntos de acople entre vigas, columnas y barras, lo cual debe quedar demostrado en la memoria de cálculo que se presente.

8.3. Estructuras menores

Las estructuras menores son los elementos estructurales que soportan los equipos primarios y materiales de instalación permanente, tales como: transformadores de instrumento, descargador de sobre voltaje, trampas de onda, interruptores, cuchillas y aisladores soporte, considerando que la altura de las estructuras y sus bases de cimentación garantice las distancias de seguridad mínimas establecidas en las Normas Técnicas de Diseño y Operación de las Instalaciones de Distribución -NTDOID- y las Normas Técnicas de Diseño y Operación del Servicio de Transporte de Energía Eléctrica -NTDOST- y otras normas aplicables que se encuentren vigentes.

El diseño se debe realizar tomando en cuenta los parámetros de velocidad máxima de viento con período de retorno, coeficiente sísmico, esfuerzos dinámicos por la operación de los equipos y cargas a nivel de pedestal según la región donde se ubique la construcción.

El diseño y análisis estructural debe realizarse por medio de un programa de computadora que incluya los parámetros necesarios de las especificaciones anteriormente indicadas.

8.4. Cimentaciones para estructuras mayores y equipos inductivos

Las cimentaciones para estructuras mayores son aquellos elementos cuyo propósito es dar soporte eficiente y seguro a las estructuras mayores, incluyendo a los equipos de transformación, capacitores de potencia y reactores de potencia.

Con base en las características constructivas y operativas, peso y dimensiones de los transformadores y/o capacitores y reactores de potencia, es necesario que la cimentación garantice su estabilidad y buen funcionamiento, para lo cual se deben incluir los medios de anclaje necesarios. Las cimentaciones mayores para los equipos de transformación y compensación reactiva deberán contar con una fosa de captación de aceite, cuya capacidad albergue la cantidad de aceite que contengan los equipos, el propósito de la fosa será la captación inmediata de fugas de aceite sin que éste se derrame.

Con el propósito de facilitar las labores de maniobra y acceso de cada transformador y/o capacitor y reactor de potencia a su respectivo cimiento, el Interesado debe incluir, para cada unidad, una cimentación de concreto armado provista de rieles con la capacidad de soportar el peso de los equipos a instalar para deslizamiento de las unidades en la longitud comprendida entre sus cimientos y el camino interior más cercano. La cimentación de concreto armado y los rieles de acero se deben diseñar utilizando como base las dimensiones del bastidor y el peso total de cada unidad.

Da

8.5. Cimentaciones para estructuras menores

Las cimentaciones para estructuras menores son aquellos elementos cuyo propósito es dar soporte a los transformadores de instrumento, descargador de voltaje, trampas de onda, interruptores, cuchillas, aisladores soporte y torre de telecomunicaciones, las cimentaciones deben ser diseñadas de acuerdo a los criterios de diseño del Transportista Propietario, presentando las memorias de cálculo correspondientes.

8.6. Edificios y casetas

El diseño de las casetas y edificios debe garantizar la estabilidad e integridad estructural ante esfuerzos mecánicos internes o externos.

Por su utilización, los edificios y casetas se clasifican en: casetas de control, edificios de subestaciones con equipos aislados en Hexafluoruro de Azufre (SF6), casetas de relevadores, casetas de tableros tipo Metal-Clad, casetas distribuidas, casetas para planta de generación tipo diésel y casetas de vigilancia.

Se deben elaborar los siguientes planos: arquitectónico, estructural y, cuando aplique, planos de instalaciones hidro sanitarias, los cuales deben contener los detalles precisos para su construcción, especificación de los materiales y parámetros de diseño (coeficiente sísmico, velocidad regional de viento con su período de retorno y capacidad de carga del terreno).

Para canalizar los cables de control y fuerza desde los equipos primarios hasta sus bases o cimentaciones, se deben utilizar tubería conduit metálica y desde su base hacia las trincheras o registros se deben utilizar tubería conduit de PVC de alta resistencia con el diámetro que se detalle en la memoria de cálculo, o de acuerdo a los criterios de diseño que traslade el Transportista Propietario.

En las subestaciones de potencia se debe considerar la instalación de un sistema para la prevención, control y extinción de incendios que incluye elementos pasivos y, en casos especiales, sistemas activos.

En aquellas subestaciones donde se instalen equipos de transformación y/o reactores de potencia, se deben incluir elementos pasivos como son la fosa de captación de aceite, el tanque colector de aceite y las mamparas para la protección de estos equipos. Las características funcionales de estos elementos deben considerar guías o recomendaciones sobre prevención, control y extinción de incendios en subestaciones eléctricas como las de la NFPA.

8.7. Ingeniería de detalle en el diseño de la obra civil

La información mínima a ser entrega por el Interesado para la ingeniería de detalle de la obra civil es la siguiente, según aplique al tipo de instalación, adjuntando las memorias de cálculo correspondiente:

1. Cronograma de diseño de la obra civil.

- 2. Plataformas, terracerías y jardinería.
- 3. Muros y cercas, incluyendo diseño arquitectónico de fachadas y puertas.
- 4. Pisos terminados.
- 5. Camino de acceso a la subestación.
- 6. Canalizaciones primarias y secundarias
- 7. Accesos (caminos) interiores y perimetrales.
- 8. Edificio con equipos aislados en Hexafluoruro de Azufre (SF6)
 - Estructural, incluyendo cimentaciones.
 - Arquitectónico, con fachadas y pisos.
 - Hidrosanitario, incluyendo fosa séptica.
- 9. Caseta de control y caseta de relevadores.
 - Estructural, incluyendo cimentaciones.
 - Arquitectónico, con fachadas y pisos.
 - Hidrosanitario, incluyendo fosa séptica.
- 10. Sistemas de drenajes.
- 11. Sistemas de trincheras y ductos.
- 12. Estructuras mayores.
 - Estructuras metálicas.
 - Cimentaciones de estructuras metálicas.
- 13. Cimentación y muros de protección para bancos de transformación y/o reactores.
- 14. Estructuras menores (soporte y cimentación)
 - Interruptores.
 - Cuchillas desconectadoras.
 - Transformadores de corriente.
 - Transformadores de potencial inductivo.
 - Transformadores de potencial capacitivo.
 - Descargador de voltaje.
 - Trampas de onda.
 - Aislador soporte.
 - Capacitores.
 - Transformador de servicios propios
- 15. Arreglo terciario y servicios propios.
 - Estructuras soporte.
 - Cimientos.
- 16. Tanque colector de aceite.
- 17. Cisterna para agua potable.
- 18. Taludes y cunetas necesarias
- 19. Otros de acuerdo al diseño específico de cada lugar y los requeridos en el documento de criterios de diseño del transportista propietario y la propuesta de conexión y uso -PCU- que este emita para el efecto.

9. REQUERIMIENTOS DEL PUNTO DE INTERCONEXIÓN

9.1. Requerimientos específicos para conectar un campo o bahía de conexión de línea, transformador de potencia o equipo de compensación de potencia reactiva, dentro de una subestación del Transportista Propietario

Todos los Agentes, Participantes y Grandes Usuarios interesados en conectar un campo de salida de línea, un transformador de potencia o equipo de compensación de potencia reactiva, dentro de una subestación del Transportista Propietario deberán cumplir con instalar, como mínimo, el equipamiento específico descrito a continuación:

 a. Interruptor de potencia con mando de resorte y cámara de extinción en SF6, como mínimo deben instalarse otras tecnologías existentes en las instalaciones del Transportista Propietario.

Para subestaciones de 230 kV y 138 kV el interruptor de potencia deberá ser de mando monopolar para el caso de bahías de línea, para el caso de bahías de transformación o compensación reactiva deberán ser de mando monopolar y relé de mando sincronizado, para subestaciones de 69 kV con mando tripolar y para los casos de salidas de media tensión de 34.5 kV ó 13.8 kV se podrá instalar interruptores de potencia o Reconectador (Recloser) con cámara de extinción en vacío. En todos los casos como mínimo deben instalarse las tecnologías existentes en las instalaciones del Transportista Propietario.

- b. Seccionadores de líneas sin o con puesta a tierra, de barra con mando motorizado (para salidas de media tensión no es necesario mando motorizado y para los casos de 230 kV, 138 kV y 69kV no se requiere seccionador de bypass); para cuchillas de puesta a tierra se indicará por el Transportista Propietario si requiere o no mando local motorizado. En caso de salidas de línea a conectarse en subestaciones con doble barra, barra de transferencia, o en configuración de interruptor y medio se deberá completar los seccionadores necesarios. En todos los casos debe instalarse como mínimo la tecnología existente en las instalaciones del Transportista Propietario o superior.
- c. Transformadores de potencial y corriente para las tres fases, según aplique a las instalaciones del Transportista Propietario y en cumplimiento a las Normas de Coordinación Comercial emitidas por el Administrador del Mercado Mayorista, así como las Normas Técnicas de Calidad del Servicio de Transporte y Sanciones emitidas por la Comisión Nacional de Energía Eléctrica. Estos deberán ser de las mismas características técnicas a los existentes en las instalaciones del transportista propietario.
- d. En el caso en que se requiera que el punto de conexión sea el de facturación, se deberá cumplir adicionalmente con las Normas de Coordinación Comercial emitidas por el Administrador del Mercado Mayorista, así como las Normas Técnicas de Calidad del Servicio de Transporte y Sanciones emitidas por la Comisión Nacional de Energía Eléctrica y Regulación Regional según aplique.

- e. Pararrayos de línea tipo subestación, o como mínimo el tipo empleado por el Transportista Propietario dentro de sus instalaciones.
- f. El interesado debe realizar el diagnostico e ingeniería necesaria para determinar todo el equipo de control y materiales de conectorización para la integración del campo al mando local y remoto del Transportista Propietario, para operación por operador local y desde el Centro de Control del Transportista Propietario con protocolo de comunicación compatible con el existente IEC 104 hacia el Centro de Control y IEC-61850 a nivel subestación. como mínimo se debe cumplir con lo establecido por el Transportista Propietario dentro de sus instalaciones.
- g. Medidor de tipo tablero precintable para monitoreo de calidad de energía según lo establecido en las Normas Técnicas de Calidad del Servicio de Transporte y Sanciones emitidas por la Comisión Nacional de Energía Eléctrica, independiente del medidor de energía exigido por la Norma de Coordinación Comercial No. 14 emitida por el Administrador del Mercado Mayorista, con protocolo Arteche, IEC 61850, DNP 3.0 con puertos seriales y dos Ethernet y puertos de fibra óptica. Como mínimo debe se debe cumplir con lo establecido por el Transportista Propietario dentro de sus instalaciones. Puede acordarse utilizar el mismo medidor para la medición de calidad y comercial, si lo permite la norma de la CNEE.
- h. Todos los equipos de protección, medición, control, comunicación, señalización y alarmas se deberán instalar en gabinetes independientes en la Sala de Control de la subestación del Transportista Propietario, con protocolo IEC 61850, como mínimo las instalaciones deben ser compatibles con las existentes en las instalaciones del Transportista Propietario. El mapeo de los equipos debe ser flexible, derivado a las señales integradas y homologadas en el SCADA del Transportista Propietario.
- Equipo de protección de línea del tipo digital, de acuerdo a lo que solicite el Transportista Propietario, y en cumplimiento a lo establecido en la Norma de Coordinación Operativa No. 4 DETERMINACIÓN DE LOS CRITERIOS DE CALIDAD Y NIVELES MÍNIMOS DE SERVICIO.
- j. Medio de comunicación para accesar a las protecciones, y los medidores de calidad de energía que son de interés para el transportista propietario. Las características del medio deben tener capacidad para obtener desde el Centro de Control del Transportista Propietario, la oscilografía y parametrización de las protecciones, así como el registro de eventos.
- k. Todos los equipos, accesorios y materiales que sean necesarios y estén establecidos en la PCU emitida por el Transportista Propietario, en los criterios de diseño y en las normas referidas en el presente documento.
- I. Todos los campos de conexión que sean construidos y conectados dentro de las instalaciones del Transportista Propietario, deberán ser administrados, operados, mantenidos y remunerados conforme lo establezca el Contrato de Conexión.

- m. Para los casos donde se modifique el sistema de comunicación existente, se deberá restablecer todas las comunicaciones que actualmente tiene en servicio el Transportista Propietario, previa aprobación del Transportista Propietario de la modificación propuesta a su sistema de comunicaciones y según se establezca en el contrato de conexión.
- n. El transportista propietario proveerá el punto de conexión para los servicios auxiliares al interesado. El interesado realizara todos los trabajos de adecuación y conexión necesarios hasta el punto de conexión a los servicios auxiliares del Transportista Propietario, incluyendo la medición de consumo para dichos servicios auxiliares.

Requerimientos específicos para conectarse en modo de seccionamiento a una línea de transmisión del Transportista Propietario

Todos los Agentes, Participantes y Grandes Usuarios interesados en conectarse en modo de seccionamiento a una línea de transmisión existente del Transportista Propietario, deberán cumplir como mínimo, con los requerimientos e instalación de equipos que se especificará en la Propuesta de Conexión y Uso, el contrato de conexión, la Norma Técnica de Conexión resolución CNEE-256-2014 y sus modificaciones y los que se detallan a continuación:

- a) No se aceptarán solicitudes para conexiones directas (conexiones en T), deberá construirse una Subestación de Maniobras ("switcheo") en todos los casos, en el punto que se acuerde entre las partes.
- b) Para el seccionamiento o partición de líneas de 230 kV, la nueva subestación deberá ser en la configuración de interruptor y medio.
- c) Para el seccionamiento o partición de líneas de 69 kV se podrá utilizar la configuración de barra simple con un seccionador "by pass", el cual permita aislar la subestación sin perder la continuidad de la línea de transmisión cuando realicen mantenimiento, salvo casos especiales en que deba especificarse de diferente manera en la Propuesta de Conexión y Uso; para tensiones superiores a 69 kV y hasta 138 kV, la configuración podrá requerirse diferente (doble barra, barra de transferencia, interruptor y medio, etc.) dependiendo del punto de ubicación de la conexión, lo cual será definido por el Transportista Propietario en la Propuesta de Conexión y Uso -PCU-.
- d) En todos los casos, cuando se tenga un voltaje igual o superior a 230 kV, la subestación de maniobras deberá construirse en configuración interruptor y medio, con campos completos, distribuidos como sigue: dos campos de salidas de línea, cada uno hacia cada una de las subestaciones existentes en cada extremo de la línea de transmisión involucrada, y un tercer campo de salida hacia las instalaciones (carga o generación) que conectará el Interesado, a menos que la PCU que emita el Transportista Propietario indique lo contrario. Para voltajes de media tensión se indicará en la PCU, de acuerdo con las condiciones particulares de las nuevas instalaciones.

- e) Cada uno de los campos deberá estar equipado como sigue, a menos que la PCU que emita el Transportista Propietario indique lo contrario:
 - I. Interruptor de potencia con mando de resorte y cámara de extinción en SF6, como mínimo deben instalarse otras tecnologías existentes en las instalaciones del Transportista Propietario en las subestaciones en los extremos remotos de la línea de transmisión a seccionar.
 - II. Para subestaciones de 230 kV y 138 kV el interruptor de potencia deberá ser de mando monopolar, como mínimo deben instalarse las tecnologías existentes en las instalaciones del Transportista Propietario en las subestaciones en los extremos remotos.
- III. Seccionadores de líneas con puesta a tierra, de barra con mando motorizado (para los casos de 230 kV y 138 kV no se requiere seccionador de bypass). En caso de salidas de línea a conectarse en subestaciones con doble barra se deberá completar lo seccionadores necesarios. En todos los casos debe instalarse como mínimo la tecnología existente en las instalaciones del Transportista Propietario o superior.
- IV. Transformadores de potencial y corriente para las tres fases, para las bahías de línea o transformación, según aplique a las instalaciones del Transportista Propietario y en cumplimiento a las Normas de Coordinación Comercial emitidas por el Administrador del Mercado Mayorista, así como las Normas Técnicas de Calidad del Servicio de Transporte y Sanciones emitidas por la Comisión Nacional de Energía Eléctrica.
- V. Transformadores de potencial, para la medición de barras y de calidad de energía.
- VI. En el caso en que se requiera que el punto de conexión sea el de facturación, se deberá cumplir adicionalmente con las Normas de Coordinación Comercial emitidas por el Administrador del Mercado Mayorista, así como las Normas Técnicas de Calidad del Servicio de Transporte y Sanciones emitidas por la Comisión Nacional de Energía Eléctrica.
- VII. El Interesado se obliga a instalar medición de calidad de energía en la frontera para reportar a la Comisión Nacional de Energía Eléctrica y dar el acceso al Transportista Propietario a la información. Puede acordarse utilizar el mismo medidor, si lo permite la norma de la CNEE.
- f) Pararrayos de línea tipo subestación, o como mínimo el tipo empleado por el Transportista Propietario dentro de sus instalaciones.
- g) Sistema de control remoto, mediante Unidad Terminal Remota, compatible con las características de comunicación del Centro de Control del Transportista Propietario, que debe tener la capacidad de efectuar al menos las siguientes funciones:
 - I. Mando de apertura y cierre de los interruptores de cada salida de línea.
 - II. Mando de apertura y cierre de seccionador de bypass (en caso exista).
- III. Indicación de posición abierto cerrado de todos los interruptores y seccionadores.
- IV. Transmisión al Centro de Control del Transportista Propietario de todas las mediciones y señales que le sean requeridas y determinadas como imprescindibles para la operación y control de las subestaciones, considerando el tiempo de refrescamiento de toda la telemetría, según sea el protocolo de envío de señales.

Je

- Trasmisión de información de fallas localizada en la memoria de los sistemas digitales de protección.
- VI. Trasmisión al Centro de Control del Transportista Propietario de alarmas prioritarias y señales que sean requeridas de la Subestación, según la prioridad establecida en el SCADA del Transportista Propietario.
- VII. Un mínimo de cuatro puertos de comunicación, uno con Protocolo IEC-104, uno con Protocolo DNP 3.0 nivel 3, otro con protocolo IEC 870-5-101, (principal y respaldo para SCADA) y un cuarto para acceso remoto, de lectura de relevadores y multimedidores, como mínimo mantener la arquitectura y configuración de las instalaciones del Transportista Propietario en los extremos remotos
- h) Sistema de telecomunicación hasta el Centro de Control del Transportista Propietario, de acuerdo con las instalaciones de este.
- i) Medidor de tipo tablero precintable para monitoreo de calidad de energía, independiente del medidor de energía exigido por la NCC 14 de AMM, con protocolo Arteche, IEC 61850, DNP 3.0 serial y DNP 3.0 sobre Ethernet, nivel 2 certificado, incluyendo puertos seriales y dos Ethernet y una interface con puertos de fibra óptica. Puede acordarse utilizar el mismo medidor, si lo permite la norma de la CNEE.
- j) Todos los equipos de protección, medición, control, comunicación, señalización y alarmas se deberán instalar en gabinetes independientes normalizados en la Sala de Control a construirse como parte de la nueva subestación, con protocolo IEC 61850, DNP 3.0 con puertos seriales, dos Ethernet y puertos de fibra óptica, deben ser compatibles con los existentes en las instalaciones del Transportista Propietario.
- k) Equipo de protección de línea del tipo digital, de acuerdo a lo que solicite el Transportista Propietario, según lo establecido en la Norma de Coordinación Operativa No. 4 DETERMINACIÓN DE LOS CRITERIOS DE CALIDAD Y NIVELES MINIMOS DE SERVICIO, con redundancia en los casos que sea indicado en la Propuesta de Conexión u Uso.
- I) Medio de comunicación para acceso a las protecciones, y los medidores de calidad de energía que son de interés para el transportista propietario. Las características del medio deben tener capacidad para obtener desde el Centro de Control del Transportista Propietario, como se indique en la PCU, la oscilografía y parametrización de las protecciones, así como el registro de eventos.
- m) Para los casos donde se modifique el sistema de comunicación existente, se deberá restablecer todas las comunicaciones que actualmente tiene en servicio el Transportista Propietario, previa aprobación del Transportista Propietario de la modificación propuesta a su sistema de comunicaciones.
- n) Después de la puesta en servicio, y el Interesado adquiera la calidad de Agente del Mercado Mayorista o Gran Usuario, para instalaciones en operación:

- Por requerimiento regulatorio, todos los Agentes y Grandes Usuarios instalarán los equipos que les sean requeridos en sus instalaciones; para equipos de uso común deberán acordar la forma de uso de acuerdo al contrato de conexión.
- Para otras mejoras, cambios o modificaciones se realizaran de mutuo acuerdo, según lo establecido en el contrato de conexión.

Para el seccionamiento de líneas de la red de 400 kV, se deberán realizar las consultas con las entidades correspondientes que las operan.

9.3. Planos de la conexión

Los planos necesarios para cada Sitio de Conexión y Punto de Interconexión se deben preparar utilizando la simbología especificada por el Transportista Propietario, al recibir el Interesado la Propuesta de Conexión y Uso.

Los planos necesarios de operación deben incluir todos los equipos de alta tensión y equipos de baja tensión asociados, indicando las características, capacidades, configuración, conexiones a los circuitos externos y nomenclatura según lo indicado por el Transportista Propietario.

El Interesado, a menos que el Contrato de Conexión indique lo contrario, debe preparar y presentarle al Transportista Propietario los planos para la operación de los equipos de alta tensión del lado del Interesado en el Punto de Interconexión, los cuales deben ser elaborados mediante la utilización programas especializados de diseño gráfico en medio magnético. El Transportista Propietario, presentará al Interesado en la PCU los planos de los equipos de alta tensión del lado del Transportista Propietario en el Punto de Interconexión, como referencia para la elaboración los planos del diseño, los cuales deben ser elaborados mediante la utilización programas especializados de diseño gráfico en medio magnético.

9.4. Ingeniería de Detalle

El Interesado debe desarrollar la ingeniería de detalle, documentar las memorias de cálculo y elaborar los planos de todos los conceptos electromecánicos y civiles. Teniendo en consideración las normas referidas en el presente documento, así como los criterios de diseño establecidos por el Transportista Propietario.

9.5. Ingeniería de detalle en el diseño electromecánico

Como mínimo deberá aportarse la siguiente información, la cual deberá adecuarse según la filosofía y criterios de diseño del Transportista Propietario, indicados en la PCU:

- 1. Cronograma de diseño electromecánico.
- 2. Esquema (diagrama unifilar simplificado).
- 3. Arreglo general.
- 4. Disposición de equipo (planta y cortes).
- 5. Redes de Tierras

- 6. Isométrico con cargas.
- 7. Localización trayectoria de trincheras, ductos y registros.
- 8. Herrajes y conectores (planta y cortes).
- 9. Detalles de herrajes, conectores y lista de materiales.
- 10. Detalles de soldaduras, varillas, montaje de red de tierras y lista de materiales.
- 11. Terciario de transformadores o autotransformadores (planta y cortes).
- 12. Detalle de la barra auxiliar.
- 13. Detalle de la barra del terciario.
- 14. Detalle de la barra de reserva.
- 15. Alumbrado exterior (planta).
- Alumbrado exterior, detalles de montaje, cuadro de cargas, diagramas y lista de materiales.
- 17. Localización de claros, flechas y tensiones.
- 18. Caseta de control. Arreglo de tableros, baterías y cargadores.
- 19. Caseta de control. Trayectorias de canalizaciones y lista de materiales.
- 20. Caseta de control. Sistema de alumbrado y lista de materiales.
- 21. Gabinetes de borneras en caseta de control.
- 22. Gabinetes de centralización.
- 23. Caseta de relevadores. Arreglo.
- 24. Caseta de relevadores. Trayectoria de canalizaciones y lista de materiales.
- 25. Caseta de relevadores. Sistema de alumbrado y lista de materiales.
- 26. Arreglo(s) de servicios propios de corriente alterna, línea de distribución y/o terciario. Arreglo planta de emergencia.
- 27. Esquema (diagrama) unifilar de protección, control y medición general.
- 28. Tablero de control (mímico).
- 29. Tableros de protecciones.
- 30. Dimensiones generales y anclaje.
- 31. Esquemas desarrollados de protección, control y medición.
- 32. Diagrama unifilar de servicios propios.
- 33. Tablero de servicios propios.
- 34. Esquemas desarrollados de servicios propios de c.a., según el voltaje disponible
- 35. Esquemas desarrollados de servicios propios 125 V c.d.
- 36. Esquemas desarrollados de servicios propios 48 V c.d.
- 37. Banco de baterías 125 V c.d. y cargadores.
- 38. Diagramas y planos de sistema de comunicaciones y control supervisorio.
- 39. Planos de montaje a detalle: Todos los equipos principales indicando tipo, marca y peso para cada tensión.
 - Transformador/Autotransformador de potencia.
 - Interruptores.
 - Cuchillas desconectadoras.
 - Transformadores de corriente.
 - Transformadores de potencial inductivo.
 - Transformadores de potencial capacitivo.
 - Descargador de voltaje.
 - Trampas de onda.
 - Aislador soporte.
 - Reactores.

- Capacitores.
- Transformador de servicios propios.
- Banco de baterías y los cargadores.
- Planta de emergencia.
- 40. Lista de cables de control y fuerza.
- 41. Memorias de cálculo.
 - Coordinación de aislamiento (distancia de seguridad y distancias mínimas recomendadas, blindaje, efecto corona, radio interferencia [nivel de ruido]).
 - Red de tierras.
 - Flechas y tensiones con gráficas para tendido.
 - Alumbrado exterior y perimetral.
 - Alumbrado caseta de control.
 - Alumbrado caseta de relevadores.
 - Aire acondicionado (tipo ventana).
 - Planta de emergencia.
- 42. Otros de acuerdo al diseño específico de cada lugar y los requeridos en el documento de criterios de diseño del transportista propietario y la propuesta de conexión y uso -PCU-que este emita para el efecto.

10. LÍNEAS DE TRANSMISIÓN. CARACTERÍSTICAS Y CONDICIONES GENERALES

A continuación se establecen los lineamientos y requerimientos mínimos que deben cumplir los diseños de Líneas de Transmisión, aplicable a voltajes de hasta 400 kV.

Los mismos deberán adecuarse según la filosofía y criterios de diseño del Transportista Propietario y a lo establecido en la PCU que se emita para el efecto.

10.1. Para estructuras

a) Distancias de seguridad:

En este concepto se debe verificar el cumplimiento de las distancias mínimas eléctricas fase a tierra, considerando la longitud del conjunto de aisladores con sus herrajes, y los conductores de fase contra cualquier parte metálica del cuerpo de la estructura a utilizar. Igualmente, se debe verificar que las distancias eléctricas sean suficientes por efecto de la altitud sobre el nivel del mar. Aplicar las NTDOID y NTDOST, y las referidas en el presente documento; para otros aspectos necesarios y no considerados en estas normas, indicar las normas aplicadas y la propuesta debe ir acompañada de las memorias de cálculo correspondientes. En cualquier caso no se acepta que las líneas del Transportista Propietario se vean reducidas en las distancias de seguridad que poseen previo a la conexión del Interesado.

b) Aspectos del diseño y construcción de estructuras

Se refiere al dimensionamiento civil, eléctrico y mecánico de la estructura considerando los siguientes datos:

- Utilización eléctrica de la estructura,
- Uso mecánico de la estructura (arboles de carga),
- Velocidad regional de viento,
- Temperatura máxima de diseño,

Je

- Ángulo de blindaje,
- Ángulo de salida del cable en la estructura con respecto al punto de sujeción,
- Altura sobre el nivel del mar,
- Tensión máxima de operación.
- según la filosofía y criterios de diseño del Transportista Propietario y a lo establecido en la PCU que se emita para el efecto.

10.2. Plano general de la trayectoria

Este documento se debe utilizar para la ejecución de las actividades previas de verificación del Transportista Propietario y para que el Interesado ejecute el levantamiento topográfico de la trayectoria de las líneas de transmisión, incluyendo:

- la identificación de la altura sobre el nivel del mar.
- condiciones orográficas,
- condiciones hidrológicas,
- cruce con vías de comunicación,
- cruce con líneas de transmisión,
- paso por poblaciones,
- paso por áreas protegidas,
- según la filosofía y criterios de diseño del Transportista Propietario y a lo establecido en la PCU que se emita para el efecto.

10.3. Siluetas generales de las estructuras

El interesado deberá entregar las siluetas de las estructuras que se utilizarán en la conexión.

10.4. Detalle en planta y perfil de llegadas, salidas y entronques

a) Llegadas y salidas.

Este documento sirve como referencia para definir las llegadas y salidas de las líneas de transmisión, así como los tipos de estructuras y su ubicación con respecto a las bahías asignadas al Punto de Interconexión.

b) Seccionamiento de líneas de transmisión existentes.

Este documento sirve para definir el detalle en donde se localizará el seccionamiento de una línea de transmisión existente.

Se debe obtener en sitio la información necesaria de la línea de transmisión existente, con el objeto de determinar los parámetros eléctricos y mecánicos para dar la solución de diseño en las estructuras involucradas en el arreglo que se dará al seccionamiento de la línea de transmisión y su adecuación en la nueva subestación por la inserción y conexión de la nueva línea de transmisión o transformador de potencia.

10.5. Coordinación de aislamiento

Este documento sirve para determinar la cantidad y tipo de aisladores. Y se establecen los requisitos para las separaciones mínimas de seguridad entre conductores de líneas aéreas, así como las que éstos deben cumplir con sus soportes, retenidas y cables de guarda, cuando están instalados en una misma estructura. Verificar lo requerido en las NTDOID y las NTDOST, y las referidas en el presente documento.

10.6. Relación de estructuras

En este documento se indica la relación de estructuras normalizadas, de las cuales se deben seleccionar aquellas que apliquen a las condiciones particulares de cada Punto de Interconexión.

10.7. Cables y herrajes

a) Cables

Los tipos de cables a ser considerados en el diseño de la línea de transmisión de preferencia deben corresponder a los de uso en líneas de transmisión existentes; en caso contrario debe presentarse la justificación y memoria de cálculo.

b) Herrajes

Este documento debe mostrar las características de los herrajes a ser utilizados, describiendo los aspectos de diseño eléctrico, mecánico y ambientales adecuados al territorio donde serán instalados.

Todos los herrajes deben ser del tipo "libre de efecto corona", adecuado para mantenimiento con línea energizada.

Las grapas de suspensión deben estar diseñadas para absorber las variaciones de las pendientes de entrada y salida de los cables, sin que se generen esfuerzos adicionales de fatiga en el punto de amarre con el cable.

Para los conjuntos de suspensión para cable conductor a instalar en postes troncocónicos, estructuras "H" formadas por postes de concreto o madera y en las cadenas en "V" de la fase central de las torres de un circuito con disposición de fases horizontal, se deben utilizar herrajes cortos.

10.8. Datos meteorológicos

Se refiere a las consideraciones meteorológicas que aplican en el Punto de Interconexión, tales como:

- a) Temperatura de las regiones de la trayectoria.
 - máxima (°C),

- media (°C),
- mínima (°C),
- coincidente (°C),
- presencia de hielo.
- b) Velocidades regionales del viento.
- c) Presiones de viento en cables (Pascales).
- d) según la filosofía y criterios de diseño del Transportista Propietario y a lo establecido en la PCU que se emita para el efecto.

10.9. Datos de altura de funcionamiento de las instalaciones

Se refiere a las consideraciones que se deben tomar en cuenta de ajustes necesarios por la altura sobre el nivel del mar al que funcionaran las nuevas instalaciones

10.10. Planos de planta y perfil y tablas de estructuras

A partir de la trayectoria definida por el Interesado, debe realizar los trabajos de topografía y generar los planos de planta, perfil y tablas de estructuras correspondientes, sobre la cual el Transportista Propietario podrá hacer observaciones por la cercanía que pueda tener y especialmente en las estructuras próximas al Punto de Interconexión.

10.11. Limitaciones ambientales

Se refiere a los aspectos ambientales que se deben aplicar dentro de las actividades de diseño, mismos que se encuentran manifestados en los requerimientos establecidos en las características particulares del Punto de Interconexión.

10.12. Desarrollo del diseño electromecánico

El diseño electromecánico deberá ser realizado utilizando un software especializado.

Dentro del diseño electromecánico se debe considerar lo siguiente:

- a) Localización de estructuras.
- b) Sistema de tierras.
- c) Sistema de amortiguamiento.
- d) Señalización especial.
- e) Según la filosofía y criterios de diseño del Transportista Propietario y a lo establecido en la PCU que se emita para el efecto.

10.13. Documentos Técnicos

Estos documentos se refieren a toda la información técnica que el Interesado presente sobre las diferentes actividades del diseño electromecánico y civil, para que el Transportista Propietario emita en su caso observaciones y/o comentarios.

Una vez atendidas las observaciones del Transportista Propietario, el Interesado debe actualizar sus documentos técnicos, entendiendo que la última versión que se genere como consecuencia de la revisión, debe ser la que aplique durante la construcción. Al finalizar la Puesta en Servicio deberá entregar todos los documentos técnicos como finalmente fue construido (As Built), en formato AUTOCAD y PDF.

Todos los dibujos, cálculos y gráficas deben presentarse con las leyendas en español, en el Sistema Internacional (SI).

10.14. Memoria descriptiva del proyecto

Previo a la elaboración del proyecto, de localización de estructuras se deben establecer y reflejar en este documento, los criterios para la selección estructuras y perspectivas inherentes al diseño electromecánico que considere, las particularidades del sitio de las obras que incluyan parámetros ambientales, eléctricos, mecánicos, orográficos, entre otros.

10.15. Planos de planta, perfil y localización de estructuras

- a) Los planos de localización de las estructuras deben contener como mínimo la siguiente información.
 - kilometraje del sitio donde han sido localizadas las estructuras,
 - número consecutivo de la estructura, iniciando con la primera estructura posterior al marco de la subestación,
 - tipo de estructura,
 - nivel de la estructura,
 - claro efectivo, claro medio horizontal y claro vertical.
 - según la filosofía y criterios de diseño del Transportista Propietario y a lo establecido en la PCU que se emita para el efecto.
- b) Esquemas a escala donde se muestren claramente los detalles de salidas y llegadas de las Líneas de Transmisión.
- c) Esquemas a escala donde se muestren claramente los detalles del punto de seccionamiento de la línea existente, señalando el tramo de las estructuras adyacentes al mismo.

10.16. Localización georeferenciada de estructuras

Consiste en elaborar y entregar un listado con la localización georeferenciada en coordenadas UTM de la ubicación definitiva de las estructuras del proyecto en un archivo Excel y kmz o kml.

82

10.17. Plantilla rígida para localización de estructuras.

Para proyectos en terrenos sensiblemente planos o loma suaves, la plantilla se debe elaborar para claros hasta de 800 m y fabricarse con un material rígido y transparente.

Para proyectos en terreno montañoso la plantilla se debe elaborar en papel plástico transparente, para claros hasta de 1500 m con 300 m de desnivel, considerando únicamente hasta el punto inferior más bajo de la catenaria.

10.18. Información digitalizada

Para el diseño desarrollado a través de un software especializado, los datos de entrada de diseño, procesamiento de datos y resultado final del proyecto deben ser entregados en archivos electrónicos.

10.19. Cálculo y dibujo de cruzamientos

Cuando la línea de transmisión cruce con vías de ferrocarril, carreteras, canales y ríos navegables, entre otros, el Interesado debe desarrollar la información técnica necesaria para cumplir con los requisitos exigidos por las autoridades correspondientes.

10.20. Planos de arreglo para fijación del Cable de Guarda de Fibra Óptica

Se debe presentar el plano donde se muestre el arreglo de la fijación del cable de guarda con fibra óptica y cajas de empalme sobre la estructura y las características de los accesorios utilizados.

10.21. Planos de conjuntos de herrajes

Se debe presentar el plano donde se muestre el arreglo de la disposición de los conjuntos de herrajes para cable conductor y cable de guarda con y sin fibra óptica, incluyendo cadenas de aisladores. Adicionalmente se deben indicar las características de los materiales instalados.

10.22. Cálculo de flechas y tensiones

Como resultado de este análisis se debe obtener la información correspondiente a las diferentes condiciones de temperatura y viento que se pueden presentar en las zonas del proyecto, para cables conductores y cables de guarda con y sin fibra óptica.

10.23. Medición de resistividad y resistencia del terreno

Esta información debe indicar la norma, metodología aplicada y resultados obtenidos.

10.24. Memoria técnica de amortiguamiento

Toda la información referente al sistema de amortiguamiento de la línea de transmisión, debe ser entregada al Transportista Propietario como parte de esta memoria técnica.

10.25. Coordinación de aislamiento

Se debe elaborar el cálculo para la coordinación de aislamiento y presentar los resultados con la memoria de cálculo y los criterios y normas de referencia aplicadas.

10.26. Memoria del cálculo del parámetro de diseño

Es la información en donde se muestra el análisis realizado para obtener el parámetro de diseño, con su respectiva memoria de cálculo.

10.27. Plano de arreglo de transposiciones

En este plano se indica el arreglo de las transposiciones de las fases en las estructuras involucradas.

10.28. Diagramas de esfuerzo-deformación

Para el cable conductor a utilizar en el proyecto, se requiere la entrega del diagrama de esfuerzo-deformación proporcionado por el proveedor de cable.

10.29. Estudio de comportamiento dinámico de la estructura y conductores.

Se deberán simular en un software especializado las condiciones reales a las que se verá sometida la línea con vientos u otras condiciones atmosféricas, para determinar que en estas condiciones la operación de la línea no se verá afectada.

10.30. Servidumbre de paso.

Se deberán atender los requerimientos de servidumbre de paso que el Transportista Propietario solicite, o en caso contrario el Interesado deberá presentar un estudio donde indique la servidumbre necesaria de acuerdo a la condición del punto de conexión, para lo cual no se debe limitar a lo establecido en la NTDOID y las NTDOST, así como a las normas referidas en el presente documento, sino incluir el comportamiento de los conductores ante el viento, el balanceo de las cadenas de aisladores, deflexión de los postes o estructuras, entre otros aspectos.

Toda la documentación de ingeniería se debe entregar en formato impreso y digital.

11. PUESTA EN SERVICIO

Para la puesta en servicio, las maniobras que requiera realizar el Interesado se ejecutarán siempre y cuando se cuente con: a) La autorización del AMM, b) Cumplimiento de los requerimientos técnicos de la Resolución de la CNEE que emita para el acceso a la capacidad de transporte, c) Cumplimiento con los Requerimientos Técnicos del Transportista Propietario y d) en caso sea una instalación de la Red de Transmisión Regional con los requisitos establecidos por la Comisión Regional de Interconexión Eléctrica.

El interesado deberá llevar a cabo y bajo su responsabilidad todas las pruebas de fábrica, aceptación y preoperativas indicadas por el transportista propietario, por el AMM o la CNEE o aquellas estipuladas en las normas aplicables de cada equipo, asumiendo todos los costos directos e indirectos para la ejecución de las mismas.

El interesado deberá programar las actividades asociadas a las pruebas pre-operativas de la instalación; estos programas deberán ser aprobados por el Transportista propietario y el AMM.

11.1. Responsabilidades

Toda maniobra que afecte la continuidad del servicio de energía eléctrica en el Punto de Interconexión se debe coordinar entre el AMM, el Transportista Propietario, y el Interesado, en conformidad con los procedimientos establecidos para la maniobra de equipos según la normativa vigente.

De acuerdo con su función, las responsabilidades del Transportista Propietario, la Comisión Nacional de Energía Eléctrica, el AMM y el Interesado conectado directamente al SNI en el Punto de Interconexión, se dan en los siguientes términos:

a) Por la construcción, montaje y puesta en servicio

Las responsabilidades por la construcción, montaje y puesta en servicio son asumidas por el Transportista Propietario y el Interesado según la propiedad que cada uno tenga sobre los equipos en el Punto de Interconexión y lo establecido en el contrato de conexión. Las consignaciones, distancias de seguridad o libranzas y la coordinación de maniobras que se deriven de las anteriores actividades, deben ser coordinadas entre el AMM, el Transportista Propietario y el Interesado.

b) Por la seguridad en la ejecución de trabajos

La responsabilidad por la ejecución de trabajos de cualquier índole, serán de todas las partes involucradas en el Punto de Interconexión y deberán cumplir con la normativa del Transportista Propietario sobre seguridad industrial, según se establezca en el contrato de conexión.

c) Por el sistema de comunicaciones

La responsabilidad por el sistema de comunicaciones será del área de telecomunicaciones de cada Agente del Mercado Mayorista o Gran Usuario, según se establezca en el contrato de conexión.

d) Por el diseño

La responsabilidad por el diseño de la conexión en el Punto de Interconexión es del Interesado cumpliendo con lo establecido en las NTDOST, NTSD, NTCSTS y la Norma diseño, construcción, operación y mantenimiento del Transportista Propietario, a menos que el contrato de conexión establezca lo contrario.

e) Por la calidad producto técnico

Es responsabilidad del Interesado mantener la calidad del producto técnico en el punto de conexión en términos de regulación de tensión, distorsión armónica, flicker, factor de potencia y el desbalance de corriente, establecidos en las NTCSTS y, cuando aplique, con la Regulación Regional de Centro América.

f) Por calidad del servicio técnico

Es responsabilidad del Interesado, si el Contrato de Conexión no indica lo contrario, la disponibilidad, continuidad y seguridad del servicio en los términos establecidos en las NTCSTS y, cuando aplique, con la Regulación Regional de Centro América.

Ante la ocurrencia de una falla en las instalaciones del Interesado, que esté ubicada dentro de la propiedad del Transportista Propietario, el responsable ante dicho evento es el Interesado; en el caso que se determine por parte del Transportista Propietario, que el equipo instalado por el Interesado está provocando afectación de la instalación propiedad de Transportista Propietario, se procederá a su desconexión conforme a la Norma de Coordinación Operativa del AMM; el Interesado al restaurar sus instalaciones y en caso se determine el riesgo que sus instalaciones pueden provocar falla se procederá informarle al Interesado por vía correo electrónico y posteriormente de forma escrita a la dirección del Interesado. Se dará aviso al Administrador del Mercado Mayorista para proceder conforme a la Norma de Coordinación Operativa correspondiente.

g) Por el uso de las instalaciones comunes

En el Contrato de Conexión se establecerá la forma en que el Interesado podrá hacer uso de las instalaciones comunes con el Transportista Propietario, y las responsabilidades de cada parte.

h) Por las telecomunicaciones.

El Interesado debe tener operativos y disponibles los equipos y servicios requeridos, según se establezca en el contrato de conexión.

i) Por el sistema de medición comercial.

El Interesado debe tener operativo y disponible el sistema de medición comercial de energía, según lo requerido en la regulación vigente, y lo establecido en el contrato de conexión.

j) Por el sistema de registro de fallas.

El Interesado debe tener disponible y operativo el sistema de registro de fallas con transmisión remota de la información a las instalaciones del Transportista Propietario, de acuerdo a lo que se establezca en el contrato de conexión.

k) Por la supervisión y control

El interesado deberá trasladar la base de datos de las señales y alarmas al Transportista Propietario para su revisión y adecuarla conforme a lo establecido por el Transportista Propietario, según se establezca en el contrato de conexión.

Se requiere que el equipo de telecontrol del Interesado haya cumplido exitosamente las pruebas, punto a punto, y reales, ejecutadas en forma local y remota previamente en el SCADA del Transportista Propietario para que posteriormente se programen las pruebas punto a punto con el AMM.

I) coordinación de protecciones

El Interesado debe realizar un estudio de coordinación de protecciones, conforme a lo requerido en la Norma de Coordinación Operativa No. 4 DETERMINACION DE CRITERIOS MININMOS DE DESEMPEÑO, a lo indicado por el Transportista Propietario en la Propuesta de Conexión y Uso –PCU- y contrato de conexión firmado entre las partes, de acuerdo al caso específico de cada Punto de Interconexión.

Los ajustes de protección en otras instalaciones que no sean propiedad del Transportista Propietario deberán ser gestionados por el Interesado con el propietario de esos activos.

11.2. Consideraciones generales

Dentro de los plazos establecidos en la Norma Técnica de Conexión, el Procedimiento de Conexión y la Propuesta de Conexión y Uso, el Interesado entregará en el cronograma de Puesta en Servicio la información que corresponda a cada uno de los pasos establecidos, acordado entre las partes involucradas con suficiente antelación para que el Transportista Propietario realice las coordinaciones correspondientes.

El Transportista Propietario podrá verificar, previo al inicio de las pruebas, que el personal del Interesado cumple con la preparación necesaria para ejecutar los trabajos que le sean asignados, sin responsabilidad alguna para el Transportista Propietario.

Las pruebas de la Puesta en Servicio de los equipos eléctricos: primario, protecciones, medición, comunicación, control y otros, son responsabilidad del Interesado. Estas pruebas podrán ser presenciadas por el Transportista Propietario y el Administrador del Mercado Mayorista, cuando corresponda.

El Transportista Propietario verificará que los valores obtenidos en los resultados de las pruebas cumplan con los requisitos mínimos para su aceptación. En caso contrario, se procederá a solicitar al Interesado hacer las correcciones correspondientes, previo a ser verificados y luego aceptados.

Para el caso de instalaciones que no sean energizadas inmediatamente después de la terminación de las pruebas para la Puesta en Servicio, se harán constar los motivos de esta situación y del procedimiento a seguir para su energización en una fecha posterior.

El Interesado elaborará la memoria técnica que incluya las memorias de cálculo de valores de ajustes previstos, los valores dejados, el personal participante, los equipos, metodologías, normas, materiales utilizados en todas las pruebas.

El Interesado entregará al Transportista Propietario la información de la Ingeniería de detalle de toda la obra, en función de lo requerido en la Propuesta de Conexión y Uso.

Para la construcción y el montaje de los equipos el Transportista Propietario observará que el Interesado cumple con las recomendaciones del fabricante, conforme a las indicaciones dadas en los manuales de transporte, almacenamiento, montaje, instalación, pruebas y puesta en operación de cada elemento.

Con el propósito de proceder a la aceptación de toda la obra, el Transportista Propietario, verificará el cumplimiento de lo requerido en la Propuesta de Conexión y Uso y lo acordado en el Contrato de Conexión.

12. OPERACIÓN

La filosofía de operación del SNI debe conducir a garantizar la máxima calidad, continuidad, confiabilidad y seguridad del suministro y transporte de energía eléctrica a los usuarios, al mínimo costo.

Los aspectos generales indicados a continuación y los que correspondan a cada caso en particular, serán indicados en el momento de elaborarse la Propuesta de Conexión y Uso o según se acuerde en el contrato de conexión.

12.1. Etapa de Construcción y Puesta en Servicio

El Interesado entregará al Transportista Propietario y al Administrador del Mercado Mayorista el cronograma de construcción y Puesta en Servicio, en los plazos establecidos, debiendo agregar la solicitud y propuesta de maniobras necesarias para el ingreso de materiales, equipos y vehículos necesarios en cada montaje.

Las solicitudes de las maniobras y desenergización serán presentadas al Administrador del Mercado Mayorista, y aprobadas por este, de acuerdo a los procedimientos existentes o el que se autorice por una circunstancia especial del Punto de Interconexión.

El Transportista Propietario y el Interesado deberán proveer personal capacitado que garanticen la máxima seguridad a las personas y a los equipos durante la ejecución de los trabajos de montaje, operación y pruebas de Puesta en Servicio en sus respectivas instalaciones y las que sean de uso común.

12.2. Etapa de Operación

La operación de las nuevas instalaciones a ser conectadas a las instalaciones del Transportista Propietario, se harán conforme a lo establecido por el Transportista Propietario y como se acuerde en el Contrato de Conexión y la Propuesta de Conexión y Uso que sea elaborada. La operación debe ser de manera coordinada.

Si en el Contrato de Conexión no se consigna lo contrario, la responsabilidad por la operación del equipo del lado del Transportista Propietario y del lado del Interesado deberá cumplir lo siguiente:

- El Transportista Propietario no pierde la autonomía operativa de una línea de su propiedad, debido al seccionamiento de la línea para la conexión del Interesado en el Punto de Interconexión.
- La operación local del equipo en un Punto de Interconexión es de responsabilidad del Transportista Propietario. Sin embargo, toda maniobra que afecte la continuidad eléctrica de la conexión se debe coordinar entre Transportista Propietario, el AMM y el Interesado, en conformidad con los procedimientos establecidos para la maniobra de equipos según la normativa vigente.
- La maniobra remota de los campos de línea por telemando es responsabilidad del AMM, según la relación operativa que corresponda.
- En cualquier caso, el Transportista Propietario debe atender de inmediato las instrucciones del AMM tanto en operación normal como para el restablecimiento después de fallas.
- La maniobra local del conmutador de derivaciones de los transformadores de potencia del Interesado, conectado en un Punto de Interconexión, es responsabilidad del Interesado y el AMM. Si la maniobra se ejecuta en posición automática o remota la responsabilidad es del AMM.
- Todas las maniobras por mantenimiento o por restablecimiento después de falla, se deben coordinar entre Transportista, el AMM y el Interesado.

13. MANTENIMIENTO

Los aspectos generales indicados a continuación y los que correspondan a cada caso en particular, serán indicados en la Guía de Mantenimiento del Punto de Interconexión.

Sí en el Contrato de Conexión no se consigna lo contrario, la responsabilidad por el mantenimiento es asumida por el propietario del equipo y, en consecuencia, es responsable de la confiabilidad del equipo, traducida en su máxima disponibilidad, según con los criterios de calidad y seguridad de la regulación nacional, y cuando aplique, la regulación regional. Los programas o planes de mantenimiento deben ser coordinados por el Interesado con el Transportista Propietario y el AMM con el fin de optimizar la ejecución de los mismos.

H

El propietario del equipo debe proveer oportunamente los repuestos necesarios para responder por la disponibilidad del equipo, en caso de requerirse algún reemplazo después de una falla del equipo.

Es requisito que el equipo del Interesado en terrenos del Transportista Propietario sea mantenido adecuadamente según su funcionalidad y asegurando que no constituya una amenaza para la seguridad del equipo o para el personal en el Punto de Interconexión. El Transportista Propietario tiene el derecho de supervisar los resultados de las pruebas y los registros de mantenimiento en cualquier momento.

Es requisito que el equipo del Transportista Propietario en terrenos del Interesado sea mantenido adecuadamente según su funcionalidad y asegurando que no constituya una amenaza para la seguridad del equipo o para el personal en el Punto de Interconexión. El Interesado tiene el derecho de inspeccionar los resultados de las pruebas y los registros de mantenimiento en cualquier momento, según se acuerde en el contrato de conexión.

El ajuste y mantenimiento de los relevadores de protección de los campos de línea son de responsabilidad del Transportista Propietario, o como se indique en el Contrato de Conexión, y por lo tanto el ajuste no podrá ser modificado unilateralmente por el Interesado para evitar la pérdida de coordinación de protecciones, de acuerdo con los resultados del Estudio de Coordinación de Protecciones.

El Transportista Propietario y el Interesado pueden consignar en el Contrato de Conexión, convenios específicos de mantenimiento, fijando alcances y costos, cumpliendo con la premisa de responsabilidad asignada a los propietarios, respecto de la máxima disponibilidad de sus equipos.

Para cada Punto de Interconexión se deben preparar planos comunes, incluyendo disposición física de equipos, configuración eléctrica, planos comunes de protección y control, así como planos comunes de servicios auxiliares.

Cuando un Interesado necesite adicionar o cambiar un equipo de alta tensión o modificar la nomenclatura existente de su equipo en un Punto de Interconexión de su propiedad, debe presentar al Transportista Propietario para su revisión, por lo menos con tres meses de anticipación, los planos de operación actualizados y revisados integrando la adición, cambio o modificación prevista.

Los planos de los equipos de operación completos preparados por el Interesado y aprobados por Transportista Propietario serán los planos de operación definitivos para toda actividad de operación y mantenimiento asociada al Punto de Interconexión.

Los mantenimientos deben ser programados de manera coordinada entre el Interesado y el Transportista Propietario con la finalidad de minimizar los tiempos de indisponibilidad de los equipos y solicitar al Administrador del Mercado Mayorista verificar que las fechas solicitas son adecuadas para mantener la confiabilidad y calidad del servicio en el área de influencia de las instalaciones involucradas.

La periodicidad del mantenimiento de cada equipo será según las recomendaciones del fabricante o la que indique la experiencia del Transportista Propietario; en el caso de equipos comunes se hará de acuerdo entre el Transportista Propietario y el Interesado, según se indique en la respectiva Guía de Mantenimiento del Punto de Interconexión.

El Interesado es responsable de sus instalaciones así como de su mantenimiento, por lo que en caso de comprobarse negligencia en la atención del mismo, el Transportista Propietario, a fin de evitar efectos adversos al Sistema Nacional Interconectado, procederá a informar lo correspondiente al Administrador del Mercado Mayorista y a la Comisión Nacional de Energía Eléctrica, y requerir la realización de las medidas correctivas necesarias para asegurar la continuidad y calidad del servicio y, de ser necesario, previo aviso y conforme al procedimiento correspondiente ante el Administrador del Mercado Mayorista, procederá a desenergizar las instalaciones en referencia sin responsabilidad alguna para con el interesado, pero si con la absoluta responsabilidad para con el Sistema Nacional Interconectado, ya que si la acción no se llevara a cabo oportunamente, se pondría en grave riesgo la seguridad operativa del Servicio de Transporte de Energía Eléctrica.

7